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1. Summary 

Very little is known about a considerable part of all proteins and it is time con-

suming and expensive to study each individual protein to determine its function, 

structure and cellular role. Proteins retain structural, functional and sequential 

characteristics from ancestral proteins and hence two proteins that share a com-

mon ancestor, i.e. are homologs, will to some extent have similar sequence, 

structure and function. One way to learn something about a protein is to identify 

its homologous and use information from those homologs to annotate the protein 

of interest. Close homologs with a common ancestor can be detected using se-

quence alone, but more distant homologs cannot. Structure is more conserved 

than sequence and enables detection of a common ancestor between more dis-

tantly related proteins and thereby also enabling transfer of information to a 

larger fraction of the uncharacterized proteins. This thesis covers my efforts to 

develop a method to use ab initio protein structure prediction to detect distant 

homologs and use the homologs to annotate proteins from the genome of Sac-

charomyces cerevisiae. 

The ab initio protein structure prediction software used in this thesis, Rosetta, 

can predict a protein’s tertiary structure using the amino acid sequence alone. 

Rosetta works by reducing the search space by approximating the local confor-

mation with conformations from the protein data bank, and judging the over all 

fitness of the simulated protein structure through a statistically derived energy 

function. The program has been successful in the last three Critical assessment of 

techniques for protein structure prediction (CASP) and the results from the last 
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CASP is reported in Paper I. Distant homologs can be detected by comparing the 

structures generated by Rosetta with structures from the Protein Data Bank 

(PDB). In general, however, such a comparison is noisy, that is, gives many an-

swers, of which only a few are correct. The noise can be filtered out by utilizing 

the fact that there is a strong relationship between protein function and protein 

structure, and either use functional information from a database or infer func-

tional information from one or more experimental high-throughput technologies. 

This idea was tested in Paper II were 100 proteins were investigated using pro-

tein structure prediction, yeast two hybrid, fluorescent microscopy and mass 

spectrometry. The data from all four technologies was integrated and 77% of the 

proteins were assigned a function. 

Data integration is very labor-intensive when done by hand, and the amount of 

information generated for each protein investigated is substantial. Everything 

needs to be automated and all data have to be stored and managed in an efficient 

way to be able to apply this technology on a genome-wide scale. Paper III and 

Paper IV cover information management, that is, how the data used and pro-

duced in the project is organized and stored. Paper V reports both how we auto-

mated the integration process using the software described in Paper I and II and 

the application of the technology to the genome of Saccharomyces cerevisiae. 
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2. Introduction 

This thesis is about what can be learned about proteins using a state of the art 

program, Rosetta. It involves developing means to organize and interpret the 

data, integrate the data with information about the proteins and making every-

thing accessible to the research community. It touches a number of different re-

search areas, including biology, systems biology, biophysics, computer science, 

information science, mathematics and statistics. My goal is to try to generate in-

formation useful to biologist who are trying to gain a better understand how we 

and other organisms around us function, and hence, this thesis is written from a 

biological perspective. The first section will give a brief introduction to proteins, 

protein structure and protein function. After that I will give a short overview of 

the current state of protein structure prediction and protein function prediction. 

The final section covers my contribution. I have gathered data by running a large 

number of programs, collected data from the experimental procedures and orga-

nized everything in a relational database. This information resource is over-

whelming when presented in a raw format, and to alleviate the problem, I created 

statistical models and information integration schema. All the data generated will 

be available to the public by Spring 2006. 

Proteins constitute most of the dry mass of a cell and perform nearly all of the 

thousands of tasks a cell carries out. Proteins catalyze chemical reactions, build 

up the cells cytoskeleton, are involved in signaling, DNA replication and trans-

portation of metabolites. Proteins are strings of 20 different kinds of amino acids, 

typically between 50 and 2000 amino acids long and are put together according 
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to a DNA template, a gene, by a large molecular structure, the ribosome. As the 

nascent protein emerges from the ribosome, it rapidly folds to an energy mini-

mum, a specific tertiary structure referred to as the proteins native state or native 

fold [1,2]. Sanger and colleagues sequenced the first protein, Insulin, in 1955 [3], 

work taking years of painstaking experiments. Since then the efficiency of se-

quencing proteins has increases many orders of magnitude. The development of 

the PCR [4,5] and the sequential advent of fast nucleotide sequencing made it 

possible to indirectly identify millions of protein sequences by translating the 

nucleotide sequence into amino acid sequence. This has led to an ever-increasing 

production of biological sequences. A considerable part of the 37.3 million pub-

licly available sequences from 165 000 organisms are uncharacterized [6,7,8], 

meaning that nothing is known about the protein itself, and no characterized ho-

mologous protein (see Section 3.3.1 for definition) can be detected with confi-

dence using sequence alone. This hinders us from understanding biology from a 

global perspective. Many of the known proteins are related, both in an evolution-

ary perspective and in a functional, structural and sequential perspective and the 

further identification of such relations can greatly speed up the characterization 

of uncharacterized proteins. 
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3. Background 

Understanding the cell on a molecular level and being able to predict outcomes 

of perturbations with high accuracy will allow us to prolong our lifespan and at 

the same time improve the quality of life and health. We are beginning to under-

stand the flow of information in the cell how the long-term information storage, 

DNA, gets translated into protein via a temporary messenger, the messenger 

RNA or mRNA for short. These proteins self-organize into complex systems of 

interaction an regulation to build up a cell together with a number of other 

chemical classes, such as lipids. The next level of organization is how these cells 

interact, with each other or with the environment. 

Technology to sequence DNA is fast and reliable and in 1995 the first full ge-

nomic sequence a living organism, Haemophilus influenzae, was finished [9]. 

This feat was followed by the full genomic sequence of yeast in 1996 [10] and 

the human genome was sequences in 2001 [11,12]. Several million genes are se-

quences and new genomes are sequenced every month [13]. There is a large gap 

between the number of proteins we known the structure of since it is possible to 

derive a proteins sequence from the sequence of the gene that codes for that pro-

tein and sequencing is much faster than solving protein structures experimen-

tally. Also, the majority of these proteins remain uncharacterized, i.e. we have no 

information about what this proteins function is, where it is located in the cell 

and with what other proteins it interact. Much can be learned of a protein by 

knowing its three dimensional structure and since solving protein structures is a 

difficult problem, generating protein structures through computational means 



   

6   

would allow us to bridge the gap between the number of known protein se-

quences and known protein structures. Once we have some information about the 

proteins, the parts that build up the cell, the next step is to elucidate how these 

proteins interact with each other and now the cell is regulated. 

The next sections will cover protein structure, the relation between a structure 

and function. The last part of this background will cover the fundamentals of 

bioinformatics and the current state of protein structure prediction. 

3.1. Protein Structure 

Proteins have evolved to become highly efficient doing what they do, working in 

a crowded environment [14,15]. Proteins species are present in vastly different 

concentrations as the number of ranges from just a few copies per cell to several 

millions [16]. Some of them are small, globular structures catalyzing a chemical 

reaction in the cytosol, some are embedded in a membrane transporting mole-

cules from one compartment to another and yet others are parts of large molecu-

lar machines, or complexes, capable of transcribing DNA to mRNA. Proteins can 

build up the cytoskeleton by polymerizing into fibers and others make muscles 

contract. Clearly, a group of chemicals that can perform such diverse set of func-

tions have to be versatile. This versatility is achieved by combining amino acids 

in a long string, each amino acid having a specific chemical property and size. In 

addition to perform all these functions, proteins have to interact with each other, 

either regulating function, or building up a molecular machine. These interac-

tions have to be specific since incorrect interactions lead to diseases, for review 

see [17]. Cells have to be able to dispose proteins easily and to regulate their 
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function, for example, by adding a phosphate group. For this to work, proteins 

cannot be too stable. Too stable proteins will not be affected by minor modifica-

tions, or be easily degraded by the cell. All these things influence the proteins 

structure. 

A proteins three-dimensional structure, or tertiary structure, with the lowest en-

ergy is referred to as its native state or fold and the process that starts with the 

unfolded protein and ends with its native state is called protein folding. Although 

proteins native states differ extensively (see Figure 1) there are common features 

that are repeated over and over again. The dominating features, the alpha helix 

and the beta sheet, are called secondary structure elements, and these elements 

come together to form the tertiary structure. All information needed about the 

tertiary structure is encoded in the primary sequence as 
Anfinsen elegantly 

showed studying the enzymatic properties and the disulfide bonds of ribonucle-

ase [1,18]. This finding gave biologist hope that they one day would be able to 

determine a proteins structure given only its primary sequence. 
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Figure 1. Protein Structures 
Proteins come in many different shapes and sizes. This image illustrates some examples: (a) a 
porin, a beta barrel embedded in the plasma membrane (PDB ID: 1HXT); (b) myoglobin, a 
globular protein (PDB ID: 1A6N); (c) lamin coil from human, biological unit (PDB ID: 1X8Y) 
and (d) an E.coli DNA polymerase Beta subunit (PDB ID: 1MMI). 

3.1.1. What Can We Learn from Protein Structures? 

When the structure of DNA was solved [19], insight into how genetic informa-

tion is passed along from mother cell to daughter cell was learned. The atom de-
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tails of the DNA molecule offered explanations to how it could be replicated 

with high fidelity and knowing this enabled the development of tools to create 

DNA, copy DNA and sequence DNA. Scientist knew that proteins played an im-

portant role and tried to solve protein structures in hope that it would give a simi-

lar revolution that the structure of DNA had done. When Kendrew solved the 

protein structure of myoglobin, it was clear that a proteins structure is much less 

regular than DNA and much more complex to utilize. Nevertheless, knowing the 

structure of a protein at the atomic level can provide powerful means by explain 

how they function. As an example, I will introduce an RNA polymerase (pol) II 

complex (see Figure 2). This complex consists of 12 protein subunits and two 

DNA strands and one RNA strand are also visible in the crystal structure. One of 

the important things learned from this structure is how the polymerase separates 

the DNA chains prior to transcription. This is essentially done with six amino 

acids, three positively charged amino acids, R326, K330 and R337 (green amino 

acids in Figure 2b), that pulls the negatively charged DNA strand away from the 

other DNA strand. Three negatively charged amino acids (E1403, E1404 and 

E1407; blue amino acids in Figure 2b) on the other side repel the DNA strand, 

resulting in a separation of the two strands. Evolutionary information was also 

learned from this structure In addition to the functional insight. Residues at the 

nucleoside triphosphate (NTP) site are universally conserved, and hence the sug-

gesting that the NTP selection mechanism is universal. The amino acids in the 

NTP site are not sequential and to identify them without a structure is not possi-

ble. 
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Figure 2. Protein Complexes 
a) This protein complex consists of 12 distinct proteins that together build up this RNA polym-
erase [20]. This RNA polymerase transcribes DNA to RNA and the individual proteins are color 
in different colors to demonstrate how these proteins come together for form the complex. b) The 
DNA is red, the proteins is gray. The amino acids responsible for the separation of DNA is dis-
played as space-fill, there the negatively charged amino acids are colored in blue and the posi-
tively charge amino acids in green. c) Two of the subunits are shown isolated from the rest of the 
complex to demonstrate that these subunits are compact domains that probably fold independ-
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ently of the complex and assembled after they have assumed their native fold. 

A number of diseases are directly related to protein structure and protein folding. 

Sickle cell anemia is a well-known disease in which a single amino acid substitu-

tion in the beta-chain in hemoglobin renders hemoglobin insoluble, which in turn 

deforms the red blood cells as the insoluble molecules crystallize. Another group 

to diseases are caused by accumulation of plaques in cells. Examples of diseases 

caused by protein plaques are Creutzfeld-Jakob's disease and Alzheimer's disease 

[21]. The hope is that understanding why these proteins become misfolded and 

subsequently accumulates, will allow to either prevent the misfolding or stop the 

accumulation of more proteins, and thereby stop the progression of the disease. 

3.1.2. The free energy of a protein 

Protein sequences have evolved to fold into a reproducible stable structure 

[22,23]. According to the widely accepted "thermodynamic hypothesis" the na-

tive conformation of a protein corresponds to the global free energy minimum of 

the protein/solvent system [1,2]. Naturally, the most interesting case is the free 

energy of the native conformation in an aqueous solution, and to some extent the 

free energy of a completely unfolded chain in an aqueous solution and the larger 

the gap between the two states are, the more stable the protein is. Many factors 

influence the free energy of a protein. The hydrophobic effect [24] plays a cru-

cial role in protein stability and folding. This effect is the result of amino acids 

that are non-polar are hidden inside the protein, and hence shield away from the 

polar water. Charged amino acids interact both with the solvent on the surface 

and in cavities, but also interact with one another. Electrostatics contributes to 
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the overall stability of proteins, especially the so-called salt bridges. van der 

Waal forces is the favorable interaction between atoms in the molecule. The 

forces are weak, but the great number of them makes their contribution impor-

tant. Hydrogen bonds are important for the overall stability of protein structures. 

Last, covalent bonds between amino acid residues are stabilizing. The most well 

known covalently bound residues are the disulfide bridge. See [25] for a review 

of forces and protein structure. 

3.1.3. Secondary Structure 

The protein backbone contains polar groups that, if they are not part of a hydro-

gen bond, are energetically unfavorable inside the protein. There are two major 

modes utilized to hydrogen-bond all polar groups of the backbone, the first one 

is local in sequence - the alpha helix, and in the second, the donor-group and the 

acceptor-group can be separated in sequence - the beta strand. Alpha helices and 

beta-strands are the two major forms of secondary structure, and there are a 

number of smaller forms as well, such as the 3-10 helix, the beta-turn and the pi-

helix. For an illustration of the different secondary structures, see Figure 3. The 

helices are stable by them selves, but the beta-strands have to align them selves 

to another beta-strand to hydrogen bond with. These secondary structure ele-

ments come together to form the tertiary structure. 

3.1.4. Tertiary Structure 

The tertiary structure, or the three-dimensional conformation or the protein, is 

the result of the secondary structure elements coming together in an energetically 
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favorable way. The beta-strands form one or many beta-sheets and the helices 

pack together on top of the sheets. The tertiary structure is the conformation with 

lowest energy in an aqueous solution. Anfinsen [18] demonstrated that all the 

information to specify the three dimensional protein structure is contained in the 

primary sequence. This has led to the assumption that it is possible to determine 

a proteins three-dimensional structure knowing only its primary sequence. For an 

illustration of a tertiary structure, see Figure 3. Proteins resemble organic crystals 

when looking at average density, but look like liquids when looking at their free 

volume distribution and many protein structures have cavities, [26]. 
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Figure 3. Tertiary Structure 
A tertiary structure of a protein. Alpha helices are gold, sheets are maroon, and coils/turns are 
light blue. 

3.1.5. Other structural features 

Between 20% and 30% of all proteins are or have some part embedded in the 

plasma membrane or organelle membranes [27,28]. The parts of the protein that 

is localized within the membrane are called membrane domains. In the majority 

of the cases, the trans membrane domain is an alpha helix that spans the mem-
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brane, but there are also beta barrels situated in the membrane. The chemical mi-

lieu in a membrane is hydrophobic, making the majority of the amino acids ex-

posed to the membrane hydrophobic. The composition differences between trans 

membrane domains and other secondary structure elements make them relatively 

easy to detect. One of the best prediction algorithms, TMHMM, is over 95% ac-

curate [27]. Membrane proteins also have an orientation; some have their N-

terminal on the inside of the membrane and some have it on the outside. Another 

prominent feature is the coiled-coil [29], two alpha helices twisted around each 

other in a super-helix. Other parts of proteins are unstructured or disordered 

[30,31,32] which means that they are constantly moving and hence not as stable 

as the rest of the protein. Low complexity regions [33] are areas of the protein 

where the sequences is very repetitious, or is built up from few amino acid types. 

All these features have implications for the protein structure and protein structure 

prediction. They can be detected using software. 

3.1.6. Structural Domains 

It became clear that there is a structural organization of large proteins into so-

called protein domains as the tertiary structure of more proteins got determined 

[34,35,36,37]. One definition of a protein domain is a polypeptide chain or part 

of a polypeptide chain that can fold into a stable, tertiary structure. A domain has 

its own hydrophobic core and the amino acids in a structural domain have less 

interactions with amino acids that belongs to other domains on the same poly-

peptide compared to amino acids within the domain. Furthermore, domains are 

commonly co-linear, and hence are built up by one contiguous peptide chain. 
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Different regions of a peptide chain or even different peptide chains build up 

some domains. One domain is often associated with a particular function 

[35,36,37] and are typical between 40 and 350 amino acids. Some domains are 

present in numerous proteins and can be looked upon as plug-ins or modules. 

Two classic examples are immunoglobulin domain [38] and the SH2 domain 

[39], present in various non-related proteins. For an illustration, see Figure 4 For 

a review about identifying domains, see [40]. NCBI offers the Conserved Do-

main Database, CDD, [41] annotating protein sequences with domain informa-

tion together with Conserved Domain Architecture Retrieval Tool, CDART, [42] 

classifying proteins with their domain content, and letting the user retrieve pro-

teins with similar architecture in the same fashion Pfam [43,44] does. CDD and 

CDART are fairly conservative and there coverage is hence limited. 
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Figure 4. Structural Domains 
Sec23/24-Sar1 pre-budding complex, a multi-domain protein (1M2O) [45] is display with the 
domains colored. The pre-budding complex is an essential part of the COPII vesicular transport 
system. The 765 amino acid long peptide chain is organized into 5 structural domains, one dis-
continuous beta sandwich domain in blue between 2-44 and 391-523 (SCOP SCCS: b.2.8.1). The 
4 other domains are as follows: Zn-finger domain (red; SCOP SCCS: g.41.10.1; 45-119), a trunk 
domain (green; SCOP SCCS: c.62.1.2; 120-390), a helical domain, (magenta; SCOP SCCS: 
a.71.2.1; 524-626) and gelsolin-like domain (gold; SCOP SCCS: d.109.2.1; 627-765). 
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3.1.7. Protein Folding 

The process in which an unfolded protein turns into a folded protein in its native 

state is called protein folding. Physical forces govern this process and all the in-

formation needed to find the native state is encoded in the primary sequence 

[1,18]. Because of the crowded environment in the cell, chaperons are needed to 

let protein fold without interacting with other proteins in the cell, reducing the 

risk of incorrect folding [46]. A simplified view is that there is two components 

to protein folding, a local, and a global. The local is the interaction between 

amino acids close in sequence. These interactions give rise to secondary struc-

ture, which forms early (and fast) in the process. The global interactions are what 

make the secondary structures come together in a compact way [47]. There are 

two methods that dominates the discussion of how proteins folds: Model 1: 

framework-model and related diffusion-diffusion model in which the secondary 

structure forms and docking of preformed elements. Model 2: hydrophobic col-

lapse drives compaction so that folding takes place in a confined space. Most 

proteins seems to be a mixture of the two [48] 

3.1.8. Protein Complexes 

The majority of proteins join together for form protein complexes. Filamentous 

proteins, actin and the tubulin monomers assemble together to build up the cells 

cytoskeleton, over 30 [49] distinct proteins (some are present in multiple copies) 

build up the nuclear pore transporting molecules in and out of the nucleus, the 

spliceosome and the DNA repair complexes are also examples of large molecular 

machines built up by many individual proteins. See Figure 2, an RNA Polym-
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erase II complex, for a protein complex determined to a resolution of 4.5Å [20] 

Protein complexes have received much attention in the last couple of years 

[50,51] and scientists realize that the context is fundamental in understanding an 

individual proteins function. It has been suggested that individual protein func-

tions can be thought of as words, and protein complexes as sentences [52]. The 

implications of this is that the meaning of the word, or the function of the protein 

is context dependent, and hence the same protein, although performing the same 

function, might have different outcomes depending on the context, e.g. what pro-

tein complex the protein is in. 

3.1.9. Determining Protein Structure Experimentally 

Two technologies, X-ray and NMR, are by far the two most common technolo-

gies used to determine protein structure experimentally. In short, to determine 

the structure using X-ray, a crystal of the protein has to be produced. This crystal 

is then X-rayed from a large number of angles, and the resulting scatter of the X-

rays can be used to calculate the position of the electron density in space. Once 

the electron density is known, it is possible to fit the atoms of the protein into 

these densities. X-ray crystallography method can be broken down into 9 sepa-

rate steps; over-expressing the protein of interest (commonly in bacteria), purify-

ing it, try to make the protein form a crystal, screening out the best crystals, sub-

jecting them to x-rays, collecting the diffraction data as the rays bounce off the 

protein atoms and using that data to determine the protein structure [53]. In NMR 

the protein is in solution so no protein crystal is needed. The spin of various 

atom types can be aligned in a strong magnetic field. The spin of these atoms can 
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be influences using radio pulses. One can measure as the atom spin returns to 

being aligned with the magnetic field. It is possible to determine how close two 

atoms are in either space or how many bonds are between them moving spin en-

ergy from atom to atom using radio pulses. Based on this, it is possible to calcu-

late the proteins structure if enough atom-atom distances are known. 

3.1.9.1. Structural Genomic Initiative 

Large resources have been spent during the last 5 years to determine many pro-

tein structures experimentally in a cost-effective way [54]. By scaling up the ef-

fort and developing tools and robotics to streamline the process of going from 

sequence to structure, each structure can be determined less expensively than it is 

possible today. The average cost within the Protein Structure Initiative program 

has dropped from 670000 USD to 180000 USD in the 4th year for each structure 

solved [53]. This number is expected to drop below 100000 USD for bacterial 

proteins during 2005. Eukaryotic proteins can cost 10 times as much and the suc-

cess rate is about 1% compared to 10% for prokaryotes [55]. The goal is to pro-

duce structures for 10000 USD each. Traditional structure biology groups spend 

between 250000 and 300000 USD per protein structure. The Protein Structure 

Initiative will most likely produce 4000-6000 unique protein structures, i.e. less 

than 30% sequence identical to any protein already in the PDB [56]. This is done 

under a common name, structural genomics, and there are many centers that fo-

cus on this. The first 5 years have focused on technological development, and 

was distributed on a fairly large number of centers. The next 5 years the focus 

will shift from technical development to production, and the number of centers 
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will be decreased. Traditionally, proteins have been studied extensively before 

their structure was determined and the structure often was of great help under-

standing the functions on a molecular level. The structural genomic centers goals 

are to determine all protein structures so that all known protein sequences have a 

structure within 30% sequence identity. This cut off was selected because the 

consensus is that all other proteins then can be modeled using homology model-

ing methods. 

3.2. Protein Function 

If it difficult to specify what a protein function is [57]. The reason for this is that 

function can mean different things. A protein function can be the actual mechan-

ics of how the protein catalyzes a reaction, or it can be defined from a cellular 

perspective, for example this protein is involved in DNA repair. In order to alle-

viate some difficulties, a number of structured ontologies has been developed, 

for example gene ontology (GO), see Section 3.2.1. Proteins that are closely re-

lated can be assumed to have the same or related functions. Serine proteases are 

a textbook example of a large number of sequences with high sequence identity 

that have the same function. Below 40% sequence identity, the conservation of 

identical protein functions decays [58,59]. Yet, the functions of more distantly 

related proteins are similar. It is not possible to link protein function to protein 

structure directly [58], yet the protein function is dependent on the structure. For 

example, the catalytic residues of an enzyme are sensitive to their relative posi-

tions and even small movements of these residues can compromise the enzymes 

efficiency. 
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A proteins function can be defined in numerous, more or less overlapping ways. 

Because of this, it is very complicated, if not impossible, to fully describe a pro-

tein's function. A protein's function can be described as its chemical activity, or it 

can be described as that partners it interacts with, or where in the cell (or outside 

the cell) the protein linger. Another abstraction is that proteins can be described 

by how its regulated or modified. 

3.2.1. The Gene Ontology 

The Gene Ontology (GO) is an hierarchical ontology developed by Ashburner 

and colleagues [60,61] to address some of the difficulties mentioned in the pre-

vious section. GO describe a proteins function from three perspectives or 

branches, its localization (cellular component), its biochemical function (molecu-

lar function) and the proteins context in the cell (biological process). Each 

branch is organized in a tree like structure with a single root (i.e. the most basic 

term) with one or more children. A function is a node in this tree like structure 

and a relation between functions is called an edge. The lower down in the tree-

like structure, the more specific the term, and terms with no children are the most 

specific functions are called leafs. Each branch is a directed acyclic graph 

(DAG), which means that each term have one or more parents, and is allowed to 

have multiple children (this differs from a tree, where terms are only allowed a 

single parent). The connections between the nodes is directed, that is have a di-

rection, and, by definition, there are no cycles in a DAG, which means you can 

never get back to the point where you started if you follow the direction of the 

edges. The simple reason for GO to be a DAG is that the nuclear membrane is 
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both part of the nucleus and the endomembrane system and hence has two par-

ents. Each protein can have one or many GO-terms ascribed to it, and all parents 

of the GO-term is implied when a GO-term is assigned. 

 

Figure 5. Section of the GO Dag 
The gene ontology is a directed acyclic graph, or a DAG. This means that each node in addition 
to having multiple children also can have multiple parents. Since the edges are directed, and, by 
definition, the DAG is acyclic, you can never end up at the same node if you are following the 
direction of the edges. 

3.2.2. Protein Interaction, Networks and Systems Biology 

It is important to understand the functional organization of cells [62] and how 

perturbations affect the cell. Every protein interacts with other molecules [63], 

whether it is other proteins, metabolic molecules or membranes. Protein-protein 

interactions are of great interest since this is indicative of how the cell is orga-

nized. Interactions are not uncommonly mediated through specific structural do-

mains, such as SH2 or SH3 domains [64]. There are many types of interactions, 

e.g. genetic interactions [65,66], physical interactions [67,68], metabolic net-

works [69,70,71] or gene regulatory networks [72,73,74]. These networks are 
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what makes everything work in the cell and small network motifs that can be as-

cribed a function exists [75], but the emergent properties of the entire network 

[76] is where knowledge can be gained that is currently not possible to gain by 

experimental means. Looking at the network topologies, there seems to be mod-

ules with very dense interaction networks carrying out some function, with less 

dense connections to the rest of the network [77]. The field trying to identify and 

structure all the data is called systems biology [78]. It has to take both genomics 

and proteomics data in consideration [79]. 

3.3. Evolution 

Evolution is a phenomenon that is central in bioinformatics. Jacob published an 

article in Science in 1977 where he states that Nature does not invent, nature 

tinkers [80]. New functions and capabilities gained by a cell is a result of a modi-

fication of something already existing and not a product of a de novo invention. 

Once a functional scaffold has arisen, it is easier to modify that scaffold to per-

form other related tasks, than to de novo invent a protein scaffold for a new func-

tion [80]. Through genetic modifications such as gene duplication [81,82,83] 

more than one copy of a gene comes into existence. This alleviates the selective 

pressure to keep the function unchanged and subsequently one or both of the 

genes can be modified. The result is two similar genes co-existing in a cell per-

forming similar functions. Both retain structural, functional and sequential char-

acteristics from the ancestral gene. Genes and their protein products are said to 

be homologs if they share a common ancestor. As more mutations changes each 

gene their common ancestry becomes more difficult to detect. As a rule of 
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thumb, it is possible to detect homologs using sequence alone down to about 

25% sequence identity, e.g. 25% of all the amino acids in the two sequences are 

identical. By definition, all proteins that belong to a SCOP (see below) superfa-

mily are homologs. Rost showed that the sequence identity of homologs within 

SCOP superfamilies peak around 9% [84,85], which is below the threshold of 

sequence detection. Hence, structure is needed to identify all members of super-

families. 

So how do we know that proteins with a certain sequence identity did not get 

created independently and just look similar by chance? There are 10200 (20150) 

possible sequences for a protein of 150 amino acids [86]. About 1038 of these are 

less than 20% identical. Not all sequences will fold to a stable tertiary structure 

in an aqueous environment. It has been estimated that about 1 out of a billion 

will fold. That gives us 1029 protein sequences of less than 20% sequence identity 

that will fold into a stable tertiary structure. Yet, it seems possible to organize 

75% of the close to 40 million sequences into 8000 protein family. These num-

bers indicate that, in fact, most sequences have a great number of homologs. 

3.3.1. Homologous Proteins 

Two proteins are homologs if they are related by divergence from a common an-

cestor [87]. There are two kind of homologs; paralogous found in the same or-

ganism, for example hemoglobin and myoglobin (Figure 6a,c), and orthologous 

performing the same task but in a different species - for example human hemo-

globin and pig hemoglobin (Figure 6a,b). All three share one common ancestor, 

but only the orthologous have the exact same function and role in the cell. The 
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hemoglobin distributes oxygen by carrying it in the blood stream whereas the 

paralogous myoglobin serve as temporary oxygen storage in the muscles. Yet, 

they all perform similar tasks and their common ancestry can be detected by se-

quential and structural similarity (Figure 6). Many tools have been developed to 

identify homologs, such as BLAST [88]. Genes are at times reorganized; two 

genes might fuse, there might be an insertion of a domain, or parts get deleted. 

This results in two homologous proteins only being homologous over some 

common part, and not over the full sequence [89]. 
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Figure 6. Orthologs vs Paralogs. 
An ancestral gene, O, is duplicated into A and B through a gene duplication event. A and B are 
homologs, but also paralogs since they have a common ancestor, and reside in the same organ-
ism. Through speciation, A now becomes two orthologs A1 and A2 and the same holds for B. A1 
and B1 are paralogs, which is true for A2 and B2, and A1,B1,A2 and B2 are all homologs [90]. 
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Figure 7. Homologous Proteins. 
The three homologs, human hemoglobin (a), pig hemoglobin (b) and human myoglobin (c) are 
compared. Human hemoglobin and human myoglobin are paralogous and share a common ances-
tor gene and are found in the same organism. 
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Human hemoglobin and pig hemoglobin are orthologous and share a common 

ancestor but are found in different organisms. The orthologous proteins share the 

same function and play the same role in the organism whereas the paralogous 

have very similar function and play slightly different roles in the organism. 

Structural super-impositions of the proteins show that they are all very similar, 

see (d,e) in Figure 7. (f,g) sequence alignments using only sequence and (h,i) se-

quence alignments using structure. Detecting that two proteins are homologs in-

fers that their structure and function are identical or related (see Figure 7) Hence, 

if one of the proteins is uncharacterized and the other performs a known function 

and/or has a known structure, this information can be used to anticipate structure 

and function for the uncharacterized protein. Detection of homologs for a given 

protein is not trivial. Finding homologs with a sequence identity of 25-30% and 

above for a protein of 100 amino acids can be done using only sequence, but be-

low this threshold, in the so-called twilight zone [84], the false positive rate be-

comes unacceptable. Structure is more conserved than sequence [84,91,92] and 

homologs in the twilight zone can be detected if the structures of the two ho-

mologs are known. Yeast 2 and the drosophila engrailed protein are homologs 

but share 17 of 60 amino acids which is in the twilight zone [58] (the sequence 

identity is 28% which is in the twilight zone for shorter proteins). Yet, their func-

tion and structure are almost identical, see Figure 8 
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Figure 8. Identical Structure, Divergent Sequences 
17 of 60 amino acids are identical between the D.Melanogester engrailed protein (a) and the 
S.cerevisiae alpha2 protein (b), yet their structures and functions are identical. This relationship 
cannot be reliably detected using only sequence. Structural information is needed. The structures 
are superimposed in (c) and the sequences are aligned using only sequence (d) and using struc-
tures (e). 

It is important to realize that there are always exceptions. Homologous do not 

always share function, and similar functions and/or similar structures do not infer 

homology. The most classical example of close homologs not sharing function is 

the alpha-lactalbumin and lysozyme [93]. These proteins have a 50% sequence 

identity, but lysozyme is an enzyme whereas alpha-lactalbumin is a non-

enzymatic blood constituent. Homology and structural analogy (i.e. structures 

resembling each other) means different things. Analogy can be a product of con-

vergence, and homologs per definition do not have to be [58]. In some cases 

there is no detectable sequence similarity between proteins of similar fold. This 

suggests a convergent evolution [94]. 

3.3.2. Protein Families 

The logical extension when finding homologous proteins is to organize them in 

families. This has been done a number of times employing different technolo-

gies. One of the more popular, Pfam, [43,44] is based on a hidden Markov model 

(HMM). A number of seed sequences are identified as belonging to a single se-

quence. The HMM is constructed from the seed sequences, and used to search all 

available sequences. In August 2005, there was 7973 protein families, covering 

75% percent of all sequences in SwissProt. 
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3.3.3. Amino Acid Conservation 

Talking a close look on these protein families reveals that some amino acids 

seem to be completely conserved in the families, even though the over all se-

quence identity is low. These conserved amino acids can in a simplified view be 

classified into two classes, the functionally conserved and the structurally con-

served. The functionally conserved amino acids are amino acids involved in, for 

example, catalytic reactions or protein interactions that might disrupt the func-

tion if mutated. The structurally conserved amino acids have important structural 

impact. A proline, for example, might be conserved in a tight turn, and since 

prolines backbone configuration differs from all other amino acids, it cannot be 

replaced without disrupting the turn. The protein structure might also be dis-

rupted if a small amino acid is substituted for a large one. 

3.3.4. Structural Similarity 

Before discussing the different prediction strategies available, a more general 

problem has to be pointed out - what does structurally equivalent mean? If we 

were able to predict the tertiary structure how do we know that the prediction 

was correct? Structures are traditionally compared using a metric called root 

mean square deviation (RMSD), that is, the root of the sum of the squared dis-

tance between for example alpha carbons of equivalent amino acids. When struc-

tures differ by a mean deviation less than 2Å, they are considered structurally 

equivalent. RMSD has two fundamental flaws of being dependent on length and 

sensitive to outliers, that is, if you match two structures perfectly, but the C-

terminal alpha helix is packed on the wrong side of the protein, the RMSD will 
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be high since the parts that are different dominate it. This constitutes a problem 

in molecular modeling since we are not likely to get near the native structure for 

RMSD to be a good metric. Which amino acids are equivalent in the two struc-

tures is also a difficult problem as the structures become more diverse. There are 

no clear solutions to these problems. Structurally equivalence is rare between 

proteins, even within the same protein family. There are a number of algorithms 

developed to compare protein structures. They are based on different technolo-

gies. Two of the most common ones are DALI [95] and VAST [96]. An algo-

rithm, MAMMOTH [97], was developed in 2001 to match structures of lower 

quality than DALI and VAST are designed to do. See Figure 9 for an illustration. 

MaxSub alleviate the problems with RMSD in that only aligned residues are 

considered [98]. MaxSub is normalized between 0 and 1, has no length depend-

encies, and is not dominated by outliers and considers how many amino acids 

that can optimally be aligned under a given distance cutoff. 
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Figure 9. Structure Alignments 
This image illustrates two almost structurally identical domains (SH2 domains) found in proteins 
that are otherwise related. a) This is the A3 domain of PDBID 1FBV, a SH2 domain b) The A2 
domain of PDBID 1G83 is also a SH2 domain c) The SH2 domains in a) and b) are overlaid in c) 
and are surprisingly similar. d) This is the full structure of PDBID 1FBV. This is a 4-domain 
protein; the SH2 (SCOP SCCS d.93.1.1) domain is located between amino acid 264 and 355. The 
three other domains are N-cbl (SCOP SCCS a.48.1.1; 47-177), EF-hand (SCOP SCCS a.39.1.7; 
178-263 and RING/U-box (SCOP SCCS g.44.1.1; 356-434). e) This is the full structure of 
PDBID 1G83. The first part is a SH3 domain (SCOP SCCS b.34.2.1) and the second part is a 
SH2 domain (SCOP SCCS d.93.1.1) 

3.3.5. Protein Structure Classifications 

The number of potential protein structures is enormous [86] but many of these 

potential protein structures will resemble each other. By grouping proteins with 

structures that resembles each other in a tree structure, where groups closer to the 

leafs are more similar, and closer to the root are less similar, it is possible to re-

duce the complexity. This is difficult because it is complicated to define a single 
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metric that describes structural similarity. Murzin and colleagues [99,100] devel-

oped a classification system, (SCOP; Structural classification of Proteins) in 

which most the known structures are classified. According to their definition it 

has been estimated that there are about 1000 significant folds [101,102,103] and 

roughly 700 of these are known (as of SCOP version 1.63). The SCOP classifica-

tion classifies protein structures according to a hierarchical 4 level tree. The lev-

els are, (1) Class, (2), Fold (3) Superfamily (4) Family, and each family contains 

a number of protein domains. Different parts of a protein structure can have dis-

tinct classifications, that is, a multi-domain protein can have numerous classifi-

cations. Hence each SCOP classification is tied to a protein structure, a polypep-

tide chain and sometimes part of a chain. SCOP is a manually curated database 

and each new structure deposited in the Protein Data Bank [56] is classified by in 

the SCOP hierarchy by Murzin and colleagues [99], see Figure 10. The current 

SCOP database, version 1.69, has 25973 protein structures, 70859 domains di-

vided into 945 folds, 1539 superfamilies and 2845 protein families. There are a 

number of classes in SCOP, 4 of which are more prominent than the others. All 

alpha proteins consist of mostly alpha helices and beta proteins contain only beta 

sheets. The alpha+beta proteins contain both alpha helices and beta sheets but the 

different elements are spatially grouped with secondary structure elements of 

similar kind. The last group, the alpha/beta group contains alpha helices and beta 

sheets mixed together. The SCOP classification is used to create the Astral data-

base [104], a domain based database where sequences and structures for all 

SCOP domains can be downloaded and analyzed. There are more domain data-

bases such as FSSP [105] and CATH [106] but they will not be discussed in this 
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thesis, see [107]. 

 

Figure 10. The SCOP classification hierarchy 
The SCOP hierarchy classifies protein structures according to their secondary structure composi-
tion and their structure. 



   

  37 

10 folds occur very frequently, and are referred to as superfolds [108]. Examples 

are the globin fold, UpDown, TIM barrel and jelly roll. Evidence suggests that 

these superfolds have been created many times through history since there are no 

detectable sequence similarities. It has been estimated that 80% of all protein se-

quences belong to 400 folds [109]. Some estimate that there will be at most 

10000 folds [86], most of them so called unifolds, i.e. have only a single member 

[109]. 

3.4. Predict Protein Structure 

The goal of protein structure prediction is to determine a proteins structure given 

only the primary sequence. The number of atoms and the number of theoretical 

conformations of even the smallest peptide is astronomical making the structure 

prediction difficult. Structure prediction can be divided up into a number of dis-

ciplines; secondary structure prediction, domain prediction, homology modeling, 

fold recognition and ab initio protein structure prediction. Each discipline is de-

scribed in more detail below but first CASP (the community wide assessment 

strategy) will be introduced. 

3.4.1. CASP and LIVEBENCH 

CASP, Critical Assessment of Techniques for Protein Structure Prediction, is a 

semi-annual event to assess advances in the field of protein structure prediction. 

Sequences of solved but unpublished protein structures are sent to the partici-

pants of CASP. The participants make their best structure prediction and return it 

to the organizers before the structure is published. The structures are carefully 
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analyzed and assessed by the organizers [110,111,112]. The query sequences or 

targets in CASP are divided up into three categories, homology modeling, fold 

recognition modeling and new fold/ab initio modeling. Rosetta ab initio is ap-

plied to the new fold category and the difficult fold recognition category. The 

number of targets in CASP is not enough to statistically evaluate the progress in 

the field, and to alleviate this problem a continually ongoing assessment was de-

veloped called Livebench. Livebench is an attempt to do the same thing as CASP 

but in an automated and continuous manner but instead of withholding the struc-

tures, the participants are trusted not to use that information. Another difference 

between Livebench and CASP is that Livebench participants are fully automated 

whereas there are human interventions in the CASP predictions [113,114]. 

3.4.2. Secondary Structure Prediction 

The objective in secondary structure prediction is to predict whether a given 

amino acid is part of a helix or a sheet or neither of them. There are many algo-

rithms available and they are based on a variety of different concepts. The best 

algorithms available today reach an accuracy of 77% and are based on artificial 

neural nets [115]. At best, secondary structure prediction algorithms are expected 

to classify up to 80% of the amino acids correctly because secondary structure is 

not only a local phenomenon, but also depends on long-range interactions [116]. 

3.4.3. Predict Structural Domains 

To accurately predict structural domains and the linking regions between these 

domains is a very important step in all structural characterization [40]. This is not 
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trivial even if the proteins structure is known. There are a number of methods 

developed to parse a structure into structural domains [117]. To parse a protein 

into structural domains given only the sequences is more difficult, and many dif-

ferent approaches have been attempted [118]. Marsden et al assign putative do-

mains using secondary structure [119] and others have used amino acid composi-

tion [120], domain-size distributions [121] or amino acid covariance in the mul-

tiple sequence alignments [122]. More computationally expensive algorithms, 

such as SnapDragon and RosettaDom folds the putative multi-domain protein, 

and assigns domains using a structure based method [117] and then looks for 

consensus assignments over many attempts [123]. We use an in-house developed 

algorithm, Ginzu, [124,125] which in an iterative fashion identifies domains 

starting with highly confident methods and subsequently applies less confident 

methods with higher sensitivity. In the first steps, the method is similar to CHOP 

[126], in that both methods identify homologs with known structure. Since the 

protein structures almost without exception is over a structural domain this in-

formation is very reliable. After this step, Ginzu resorts to more sensitive meth-

ods, the fold recognition methods, is applied which again identifies protein struc-

tures belonging to the same superfamily. Both methods rely in identifying pro-

tein family from Pfam, which also corresponds to structural domains. Ginzu 

lastly resorts to trying to parse domain information from the Multiple Sequence 

Alignment, a method that is not very reliable, but is very sensitive. 

3.4.4. Homology Modeling 

If the sequence for which the structure is to be predicted has a close homolog 
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(40% sequence identity) of which the structure is known, it is possible to use that 

structure as a template and drape the structure with the sequence of the protein of 

known structure. The structure with the new sequence now has to be relaxed and 

loops rebuilt. Sali and colleagues have automated this process and is serving a 

large database with homology models [127]. For a review, see [128]. 

3.4.5. Fold Recognition 

A majority of the algorithms presented below are based on secondary structure 

prediction algorithms. Fold recognition or threading as it is also referred to, be-

comes increasingly powerful as more structures are solved, (for a review see 

[129]). There are 1029 different amino acid sequences of length 150 of less than 

20% sequence identity that will fold into a stable tertiary structure and it has 

been estimated that the total number of highly populated folds do not exceed 

1000 [101]. Hence, it is easier to solve the inverse folding problem, that is, iden-

tifying the structure fold that an unknown protein sequences most likely belong 

to. By draping the query sequence onto all known folds and estimating the com-

patibility between sequence and the structure, one can estimate the probability of 

that sequence having that structure. Once a compatible structure is found, using 

the homologous proteins structure as a template, one can 'drape' that structure 

with the query sequence and hence come up with a structure for the query pro-

tein. Vast arrays of programs are available, based on very different technologies. 

Some of the programs use 3D profiles where others use only secondary structure 

prediction and compare to secondary structures of known proteins, such as 

3DPSSM [130] and BASIC [131]. Other so called consensus servers or meta 
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servers are based on a number of other fold recognition servers and tries to find a 

consensus between them [132]. The PCONS [133] software is a neural net-based 

consensus server using 5 or 6 (depending on the version of the PCONS server) 

other servers as input, and produces a consensus structure. This approach works 

well since the servers PCONS is based on are somewhat orthogonal in their ap-

proach to each other. Many genomes have been structurally characterized using 

homology modeling and fold recognition [134], including human [135]. 

3.4.6. Ab Initio Protein Structure Prediction 

Ab initio protein structure prediction modeling without a template, i.e. a ho-

molog from which you can derive the over all fold. The objective is simple: 

Given a sequence, predict the tertiary structure. There are two main components 

of the problem, (1) the energy potential and (2) the search space (the number of 

possible conformations of the polypeptide). The energy potential guides the 

search towards the global energy minimum and without an accurate potential this 

is not possible. The true energy potential is very complicated with numerous dif-

ferent components at play such as solvation, electrostatic interactions, van der 

Waals interactions, bond lengths and bond angles. Two categories of energy po-

tentials are used in practice, the molecular mechanics potential model and the 

statistically derived potentials derived from experimental structures [136,137]. 

Much of the details have to be sacrificed to keep computer models simple and 

fast and the energy potential used to evaluate the fitness of the model have be 

modified accordingly. In molecular dynamics simulations one integrates New-

ton's equation of motion for the polypeptide chain using a physically reasonable 
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potential function. This approach is computationally expensive (the search prob-

lem is enormous) and it is still unclear if the energy function is accurate enough 

to guide the search. An alternative approach is to reduce the complexity of the 

search and the energy potential by simplifying the model. Two main categories 

exist, the lattice models and the non-lattice models. The lattice models have dif-

ficulties with describing a protein structure accurately. The non-lattice models 

have had more success than the other approaches. Common to most of them is 

that they reduce complexity by fixing bond-lengths and fixing rotamers (the 

number of possible side-chain conformations) and some use only a few phi and 

psi angles or a few phi-psi angle combinations. Some use centroids (i.e. represent 

an amino acids as a single point) instead of the full atom set. The prospects for 

ab initio modeling is discussed in [138] and [139]. For a review, see [140]. 

3.4.6.1. Rosetta 

Rosetta is a software package developed by David Baker and colleagues. It is 

written in C++, an object oriented programming language, and it consisted of 

290000 lines of code with 275 command line options (July 2005). The Rosetta 

algorithm [111,112,141,142] is an ab initio protein structure prediction based on 

a knowledge based potential and that reduces the search space by using local 

conformations of short amino acid fragments from the PDB [56]. The initial 

search is done in centroid mode and an optional subsequent model refinement is 

done in a full atom mode. The Rosetta algorithm was developed under the as-

sumption that a short sequence of amino acids have a finite number of conforma-

tions and that these conformations are represented in the PDB. Rosetta is a 
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Monte Carlo simulated annealing procedure and have had great success in 

CASP, see Paper I. One can say that Rosetta bridges the gap between sequence 

and structure, but this bridge goes two ways, that is, it is possible to go from 

structure to sequence. This is commonly referred to as protein design and two 

landmark projects have been completed using Rosetta in this realm over the last 

couple of years. TOP7, designed by Kuhlman and colleagues, is more stable than 

similar proteins in its size class [143]. This stability leads to a number of proper-

ties not readily seen in nature, and has opened a new research field where scien-

tists for the first time can study proteins not optimized for fast and simple folding 

but just for stability. The other major design project, work by Korkegian and col-

leagues, was to stabilize an enzyme [144]. A number of key amino acids were 

replaced and it resulted in a more stable protein that also increased survival of re-

engineered bacteria at higher temperatures than bacteria with the wild-type ver-

sion of the protein. 

3.5. Predict Protein Function 

Predicting a proteins function from experiments or other properties is difficult. 

Not only is the notion of function complicated (see above) but the definition 

when two functions are similar becomes complicated to quantify. Looking at the 

GO-DAG reveals that functions are described in general terms, (close to the 

root), and in great detail (close to the leafs), and that the distance between nodes 

doesn't have much of a correlation of how similar or dissimilar two functions are. 

In general, there are two ways of looking at similarity/dissimilarity between 

functional assignments, one is based on the Enzyme classification and the other 
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is based on GO. The Enzyme Classification is a true tree with four levels, which 

depend on kind of reaction and type of ligand/product. Belonging to the same 

branch at some level indicates similar/same function. In the GO DAG, it is pos-

sible to trace the two functions to the root, and look at the first common node. 

Once a common node is found it is possible to calculate some kind of similarity 

score depending on the total number of gene products in that common node and 

the fraction of these annotated with one or the other function of interest. Both 

systems have advantages and disadvantages, most notably that the edges does not 

correspond to any closeness, i.e. a single edge different might reflect quite dif-

ferent functions or close. The problems of assessing closeness between functions 

carries over when evaluating success or failure for structure prediction and when 

analyzing how distant two homologs can be and still retain a similar/identical 

function. 

Bartlett and colleagues did an careful analysis of the relationship between con-

served function and sequence identity between two proteins and came they found 

that above 40% sequence identity, the degree of functional conservation is high 

[59]. Wilson et al. investigated how much information that can be transferred 

between homologous protein domains of known structure. [145]. They found 

that identical protein functions are conserved down to about 40% sequence iden-

tity, and broad functional classes conserved down to about 25% sequence iden-

tity. On the other hand, Hegyi and Gerstein [146] did a thorough investigation if 

a stable link between structure and function could be established and they con-

cluded that sometimes such a link could be established. There are some major 

hurdles that have to be overcome before the relation between structure and func-
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tion is truly understood. Functional annotation of unknown genes has been ap-

pointed one of the best applications for protein structure prediction. In the major-

ity of cases, a stable link between a structure and a function can be established, 

and it has been shown that ab initio models have sufficient qualities to identify 

this function [147]. 

Many high-throughput technologies aim to place a protein in a context and 

thereby learn something about the proteins function [50,51,148,149]. These 

methods do not however elucidate the molecular activity per se. As of today, 

there are not many high-throughput technologies that target the molecular activ-

ity, and some that do are labor-intensive and hence also expensive. For example, 

protein complex purification followed by MS identification experiments identi-

fies protein complexes. Proteins that belong to the same protein complex are 

likely to participate in the same biological process and be found in the same cel-

lular compartment. The uncharacterized proteins can be annotated if the biologi-

cal process or cellular compartment are known for some of the constituents of 

the protein complex Protein structure on the other hand give hints about the mo-

lecular activity, and could potentially be a great complement to other technolo-

gies. It is possible to infer function from blind ab initio protein structure predic-

tion [150]. The relation between structure and function is not easily de-

convoluted [151]. As the structural genomics centers found out, knowing the 

structure does not always easily translate to knowing its function Two technolo-

gies aim at identifying interacting proteins and assign protein function by guilt 

by association. These two technologies, Tandem affinity purification (TAG) tag 

Multidimensional protein identification technology (MudPIT [152]) and yeast 
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two-hybrid (Y2H) have been applied in genome-wide assays [50,51,148,149], 

fluorescent microscopy can identify what cellular compartment a protein is found 

in and ab initio protein structure prediction can give insights in the molecular 

function of a protein. Transcription factors have been studied on a genome wide 

scale in yeast by cross-linking myc-tagged transcription factors to the DNA, pu-

rifying and sequencing the DNA. 800 genes vary in a periodic fashion during the 

yeast cell cycle. [153] Proteins can be assigned putative function by co-regulated 

gene expression [154]. 

So we know there are proteins with known structure and that we with some accu-

racy can predict the structure of proteins without close homologs of known struc-

ture. We also know that there is a strong relationship between structure and func-

tion. Is it possible to use this information and the protein structure prediction 

tools to more accurately annotate proteins with function or structure? 
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4. Present Investigation 

4.1. Objectives 

The objective of this thesis is to use ab initio protein structure prediction to char-

acterize proteins, both functionally and structurally, on a genome-wide scale. I 

investigated how to integrate information known about proteins, both derived 

from proteomics experiments and downloaded from on-line databases, to in-

crease the confidence of the structural classification, and assess the quality of the 

classification by a simple probability measure. 

4.2. Method development 

4.2.1. Rosetta in CASP6 (Paper I) 

This paper illustrates how well Rosetta, the central software, performs in a true 

blind test. Rosettas performance is fundamental for any of the results in this the-

sis to be valid. 

CASP is a true blind test and the results are indicative what results to expect 

when applying the methodology on a large scale assuming that the target selec-

tion in CASP is unbiased. The structural domain architecture was predicted for 

all targets, and the longer proteins were parsed in to two or more domains using 

two domain-parsing technologies, Ginzu and RosettaDom. RosettaDom and 

Ginzu predict structural domains with 80% accuracy, comparable to human ex-

perts and better than other automated servers as assessed in CASP6 [125]. Ro-
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setta is one of the most accurate ab initio protein structure prediction algorithms, 

and the over all performance on smaller structural domains is good. Rosettas per-

formance drops when the domain parse was incorrect, and hence the over all 

success is dependent on more than Rosetta itself. In conclusion, this experiment 

reaffirmed that the Rosetta ab initio protocol does in fact predict protein struc-

tures well, and the domain parsing algorithms we use, that are essential in the 

larger studies, are accurate. A few highlights are worth mentioning. T0198 is an 

alpha-helical protein of close to 200 amino acids, which is at the upper bound of 

what Rosetta can predict. 90% of the alpha carbon atoms of the best structure 

prediction are within 4Å when optimally aligned. For target T0281, a 70 amino 

acid protein, we predicted the structure of a large number of homologs in order 

to increase the low-resolution sampling. After clustering, a number of decoys 

were selected for full-atom minimization, a method where all atoms are explic-

itly represented. This is computationally expensive, but the full atom mode has a 

more physical energy function, and it seems possible to identify the native to-

pologies using the energy function alone. The core of a protein can be described 

as a jigsaw puzzle where atoms from different amino acid residues intermingle 

closely giving favorable van der Waal interactions. This jigsaw puzzle is very 

difficult to predict because even a small deviation makes the atoms overlap and 

raises the energy dramatically. The use of multiple homologs in the low-

resolution mode and subsequent replacement of the target sequence with loop 

building gives a more diverse backbone sampling, and increases the likelihood of 

the minimization step predicting the protein core accurately. Target T0281 was 

predicted as 1.59Å, the most accurate prediction in CASP ever. 
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4.2.2. 100 uncharacterized essential Open Reading Frames 

(Paper II) 

This paper is central in this thesis because it describes a proof-of-principle pro-

ject where we show that integration of protein structure prediction data indeed is 

useful when studying proteins of which nothing is known. Every protein in this 

study was manually evaluated. 

The project focused on 100 putative uncharacterized essential open reading 

frame (ORFs) products from Saccharomyces cerevisiae, Baker's yeast. Three 

proteomics technologies were employed on these 100 ORFs in addition to the 

domain parsing and ab initio protein structure prediction. The experimental tech-

niques were tandem affinity protein complex purification and subsequent MS 

analysis (MudPIT) [152], yeast two hybrid (Y2H) and fluorescent microscopy. 

The MudPIT analysis reveals protein complexes, Y2H identify interacting part-

ners and fluorescent microscopy localized the protein to a cellular compartment 

[155]. The goal of the experiment was to assign GO-terms from the three 

branches, molecular function, biological process and cellular compartment, to 

each of the 100 ORFs. Biological process and in some cases, cellular component 

can be assigned using MudPIT and Y2H data, cellular component is obtained by 

fluorescent microscopy and molecular function can be deduced from the protein 

structure prediction data. All technologies except for the fluorescent localization 

are noisy, that is, reports many false positives. We utilized the fact that GO-

terms are more likely to co-occur with some GO-terms than others, e.g. the bio-

logical process term DNA repair is more likely to co-occur with the cellular 
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compartment term nucleus then the cellular compartment term golgi since DNA 

is primarily found in the nucleus in eukaryotic organisms. We were able to filter 

out unlikely GO-term assignments by integrating data from all four technologies. 

GO-terms could be assigned to 77% of the 100 ORFs and 19 of these could be 

annotated with gene ontology terms from all three GO branches. 

4.3. The DDB information management system (Paper III 

and Paper IV) 

Paper III and Paper IV are in many ways the most important papers in this thesis. 

These papers describe a software package, DDB, I have developed since the 

summer of 2001 and the other papers in this thesis have all been analyzed using 

this software package. The three objectives of this database is to, first store and 

organize data related to proteins, second, to integrate this data with mainly large 

on-line data repositories such at NCBI's Entrez system, and third analyze the 

data. These objectives are difficult to reach in a generic and comprehensive way, 

and as a result DDB is not developed to be distributed and used by large numbers 

of non-expert users, but instead, to serve as a framework and a set of standards 

for an expert developer to fulfill the objectives in a specific project where the 

incoming data is known, the databases to integrate are determined and the analy-

sis can be developed after the needs of the experimentalist. 

This software package was used in Paper I to produce and organize the all the 

protein targets and their homologs and all the Rosetta prediction generated for 

them. In Paper II, the system served as bookkeeping software to keep track of the 
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progress on the selected 100 protein targets and to generate and analyze the pro-

tein structure prediction data. The software was utilized in Paper V from down-

loading the genomes from NCBI to generate statistical models and in the final 

phase, to generate data structures underlying the public websites. A task of the 

size of predicting structures for the yeast genome is a too large for a single com-

puter. As a matter of fact, it would talk a single computer one thousand years to 

complete the yeast genome. Therefore, the DDB system has 4 major sub sys-

tems, the web server (front end), a back end server that serves as the main con-

troller together with the database server. The fourth system is a computational 

unit that can execute large calculations. The core of the software is the data 

model, served by a relational database by the database server. This database is 

currently running on a single computer in each of the implementations, see 

Figure 11, but this can be extended to a whole cluster of computers should the 

need for capacity increase. The number of tables in this database exceeds 180, 

and the largest implementation, the hddb system, employs a database server, a 

back-end server, a web server a file server and about 150 dual-processor compu-

tational nodes (computers). The web server displays the data from the database 

to the user via a web interface. The bulk of the computation is, obviously, done 

by the computational system, which, in one of the implementations, are done us-

ing the world community grid, a service provided by IBM and as of the summer 

of 2005 involves 130000 computers utilized only when the owner of the machine 

is not using it. The world community grid was considered one of the 20 largest 

computers as of the summer of 2005, if measured by operations per second at 

top-capacity. 
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Paper III describes the 2DE components of the DDB system. In Paper IV, we 

report that DDB now handles quantitative data from MS. It can read and analyze 

MzXML files [156] and hence interfaces with a large number of mass spec-

trometers. In addition, it readily handles protein domains, protein structure pre-

diction and a number of sequence based prediction software, including Pfam and 

prosite. Unfortunately, we had to abandon the database-only approach and de-

velop a mixed model, keeping indexes and summary data in the database and the 

large files on the file system. This is mainly a limitation of the MySQL software, 

and to some extent a limit of the current hardware. As of the summer of 2005 

there are three implementations, the proteomics version, 2ddb, the yeast version, 

bddb and the human proteome folding project version, hddb. There is a public 

site (http:///wwww.2ddb.org), derived from the 2ddb implementation, demon-

strating some of the published aspects of the software. 
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Figure 11. Organization of the DDB System 
The DDB system is composed of a front-end, a back-end and a database server. Large computa-
tions can be farmed out to condor-based computer facilities or grid-computers. Internally, DDB 
uses close to 180 relational tables describing proteins and peptides all the way up to describing 
meta-information about computational resources. 
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4.4. Structural prediction of yeast (Paper V) 

As a continuation of Paper II, we applied the same methodology to a number of 

genomes, ranging from E.coli to Human. Several hundred hours were poured 

into the structure prediction part in Paper II, especially in the validation of pro-

tein structure matches to mammoth and the subsequent conversion to functional 

annotations by integrating the data from the other technologies. In Paper V we 

automated and formalized the steps taken manually in Paper II, and applied the 

technology on yeast. Yeast has roughly 6200 ORFs with an average length of 

about 450 amino acids. The average domain is about 175 amino acids long. 

Hence, it is expected that, on average, yeast proteins have two or three domains. 

The main challenges in this project was first, data production - how to scale the 

size of the project sixty times to include all of yeast, secondly, how to deal with 

large amounts of complex data and last, how to automate the manual steps in Pa-

per II. The first section was solved by collaboration with the ISB and IBM, pro-

viding several thousands of computers performing the actual protein structure 

prediction simulations. Our resources were spend in the preprocessing and post 

processing. The data management was solved using the DDB software (see Paper 

III and IV). The absolute bulk of the work put into this project involved the 

automation procedures. We had to replace the high throughput experiments with 

an online database, the GO database. We used a Bayesian approach to combine 

the data, which turned out to work. Our most confident predictions are high-

lighted in Paper V. Depending on that kind of information was available, we as-

signed a putative superfamily annotation, and functional annotations from one or 
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two of the GO-branches. 

There are five types of domains that Ginzu assigns, psiblast domains, the most 

confident, is assigned having a sequence detectable homolog with known struc-

ture. The fold recognition domain is very similar to the psiblast domain, but the 

homolog was detected using a fold recognition algorithm instead of psiblast. The 

Pfam hidden Markov model identifies Pfam domains and the MSA domain is 

identified by having a lot of homologs that do not have a known structure and 

that do not belong to a Pfam family. The last domain, the unassigned domain, is 

everything else that is not assigned to any of the 4 other types of domains. The 

6200 ORFs of the yeast genome was parsed into 15900 domains, and 41% of 

these were psiblast domains. 11% were fold recognition domains; 6% Pfam and 

14% MSA domains. The rest, 29% were unassigned. The MSA, Pfam and unas-

signed domains were subjected to Rosetta if shorter than 150 amino acids, and 

we successfully obtained predictions for 3350 domains. Out of these, we could 

classify 390 domains to a superfamily using the MCM alone, and 1448 were as-

signed a superfamily using additional data. We also assigned putative functions 

to 2700 of the 6200 proteins. 
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5. General Discussion 

5.1. Methods 

The protein structure prediction technology has improved over the last 10 years 

and the technology is reaching levels where it is useful from a biological per-

spective. As with many computational approaches, the false positive rate is high 

but there are several possibilities to alleviate the problem. We have focused on 

two ways to increase the accuracy of predictions. The first approach involved 

increasing the resolution of the prediction, increasing the sampling and evaluat-

ing the result using full-atom models. The structure prediction of target T281 in 

CASP6 (Paper I) indicated that it is possible to predict protein structures at a 

high resolution and identify good prediction using a full-atom energy function. 

Structure predictions for T281 and a number of homologs of T281 were gener-

ated. The resulting structure predictions were clustered and processed both indi-

vidually and in combinations. The native T281 sequence war threaded onto the 

structure predictions of the homologs, and the loops rebuilt. In addition, the cen-

troid-based backbones were converted to full-atom structures, and a more physi-

cal energy function was applied to evaluate fitness of the structure. Rosetta was 

incapable of generating low-rmsd structure predictions for T281, but was capable 

to do so with one of the homologs. Once the full atom model was built, it was 

possible to recognize the correct topology by the full atom energy function. This 

was followed up by P. Bradley who was successful in 6 out of 16 cases [157]. 

This is about 150 times more expensive computationally compared to the cen-



   

  57 

troid-based structure prediction, and hence, cannot be applied on a genome-wide 

scale yet. T281 is the most accurate ab initio protein structure prediction to date. 

Although computationally expensive, this approach is viable, and the most criti-

cal step is to select targets of interest. Interesting targets have to be within reach 

of the protocol, i.e. short enough to be computationally feasible. The second ap-

proach to increase the quality of the structure prediction is to filter out the false 

positives using auxiliary data, either from proteomics experiments (Paper II) or 

from databases (Paper V). This is much less computationally expensive, but is 

limited to proteins that belong to a known superfamily. 

The Rosetta model evaluation and data integration was done manually in Paper 

II. In the process, we learned that two long alpha helices in the predicted struc-

ture could easily be aligned with two long alpha helices in the experimental do-

main even though the rest of the proteins are very dissimilar. Hence, two aligned 

alpha helices are not enough to classify the predicted structure with a superfa-

mily and need to be filtered out. This was achieved automatically by calculating 

the contact order of the matched region and penalizing local alignments. By 

comparing the predicted structures to a database of domains, and evaluating the 

probability that the predicted structure does indeed belong the same, say, SCOP 

superfamily, is one use of the data. This will give the researcher an opportunity 

to identify important parts of the sequence and in some cases functional amino 

acids. In order to assign probabilities on how likely a given predicted structure 

does match an entry in a domain database. I created a reference dataset, that is, I 

predicted structures for 1000 proteins of known structure excluding structural 

information from the protein itself and its sequence detectable homologs. This 
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dataset will be referred to as the scopFold dataset from here on. By comparing 

the predicted structures from the scopFold to the domain database (Astral 1.67, 

reduced to 40% sequence identity), and measuring a number of features, I came 

up with a list of variables containing information about the likelihood of the pro-

teins belonging to the same protein family or not. From the work in Paper II, we 

learned that features determining fitness of a match for all alpha proteins are dif-

ferent from the features from all beta proteins or alpha/beta proteins. Logistic 

regression models were created for all alpha proteins, all beta proteins and al-

pha/beta proteins using the information carrying variables. The reason for this 

was a simple analysis of how important individual variables were, and the differ-

ence between the different protein classes. Each protein generates several thou-

sand matches to be evaluated, but only a small number of these are correct. This 

complicates the problem, because just determining “incorrect” will give you 

right almost all the time, but then, the model would have no predictive power. 

The four main variables we use are: (1) zscore, which evaluates how similar the 

predicted structures is; (2) convergence, which is a metric of how confident Ro-

setta was in the prediction; (3) contact order [158] over the matched region of the 

predicted structure, which is evaluating the complexity of the match; and (4) the 

absolute log of the ratio between the two protein lengths. Much time was spent 

trying to come up with a model that accurately could identify matches between a 

set of structure predictions and domains. As always, one have to take a stand 

whether it is most important to maximize the number of true positives or mini-

mize the number of false positives. The first approach will identify more of the 

correct predictions, but will also allow more incorrect predictions to be reported 
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as true. The second approach will give you mostly correct predictions, but at the 

expense of throwing out correct matches to a higher degree. We created several 

hundred statistical models, mainly utilizing general linear regression, but Gaus-

sian mixture models and k-nearest neighbor approaches were also investigated in 

collaboration with Luca Cazzanti and Maya Gupta at the Electrical Engineering 

department, University of Washington (to appear in Proceedings of the IEEE 

Workshop on Machine Learning for Signal Processing). We produced close to 

1100 million structure predictions and thus we were more interested in identify-

ing true positives at the expense of throwing out correct predictions. 

In Paper II, the Yeast Resource Center applied four techniques on 100 essential 

uncharacterized ORFs. These 100 have been of interest to the yeast community 

since they seem to be essential for survival of the organism under optimal growth 

conditions. One can speculate that these genes are part of the basic machinery 

that is the basis of life. The four technologies produced a wealth of data and after 

months of trying to interpret this data it stood clear that it was possible to quite 

accurately identify functions for these 100 proteins even though the incoming 

data is noisy. The reason for this is attributed to the fact that the incorrect infor-

mation from each technology was incompatible with the incorrect information 

from other technologies, whereas the correct information in each dataset is com-

patible. For example, if a protein is implicated in DNA repair and a signal cas-

cade process by MS, found in the nucleus and predicted to be either a DNA 

binder or involved in electron transfer, it is more probable that DNA repair, 

DNA binding and nucleus are correct. The main drawback with the approach 

was the hours spent; three people spent the better part of three months pouring 
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over the data. This approach hence has a natural limit for how many targets can 

be processed. The next couple of years were spent trying to rigorously automate 

what we did in Paper II. To make the approach more generic, we decided to con-

vert interaction data (MS and Y2H) to GO process terms and localization data to 

GO component terms. Protein structure prediction data can be converted to mo-

lecular function, or if structural characterization is the goal, SCOP classification 

distributions. With this comes the possibility to replace the MS, Y2H and fluo-

rescent microscopy with information from online databases, an approach faster 

and cheaper than carrying out the experiments. The first thing we wanted to do 

was do be able to annotate full genomes structurally, i.e. with SCOP superfamily 

information. The structure prediction data at best gives a distribution of more or 

less likely superfamilies. If the protein that was folded have functional annota-

tions it is possible to generate a distribution of superfamilies compatible with 

that function. To do this, a mapping between superfamily and GO is needed. 

This was generated from 250000 GO annotations from the PDB. We took a Bay-

esian approach in combining these distributions, and as seen in Paper V, it is a 

successful way of approaching the automation problem. 

5.2. Information Management 

Before discussing the protein structure prediction and integration with data, a 

more technical aspect of this work has to be discussed. Information management, 

or, how to store, organize, analyze and integrate data has been the focus of atten-

tion of a large research community for a long time. Biology has become an in-

formation science, and the amount of data available is large, and the rate of pro-
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duction is increasing. At some point, too much information becomes a problem 

not trivial to solve. "We're drowning in information, but starve for knowledge" is 

an excellent quote that captures the problem accurately. The reason for this is 

that many information resources, for example, GenBank and PDB, are growing 

exponentially. The number of protein structures deposited in the last six months 

outnumbers the number of structures deposited between 1972 and 1992. The 

amount of data and the complexity of the data create problems when working on 

full genomes. 

Much of the effort in this thesis has been to solve problems related to informa-

tion management, and both paper III and IV are about information management 

in Mass Spectrometry but the same software has been utilized in the organization 

and management of the data in the three other papers. The information manage-

ment is addressed by a three-tier database/visualization model with a relational 

database as the data storage tier and a web servers as the visualization tier. This 

approach has advantages and disadvantages. The advantage of relational data-

bases is the capability of managing large amounts of related data, and making it 

easily accessible. One of the major disadvantages is that the data model is 

"square", meaning that all proteins have to have the same attributes. If a subset of 

your proteins have additional attribute, these attributes have to be stored in either 

a partly filled column in the database, or as an additional table. I have mainly 

employed the latter strategy with additional tables, party explaining why the data 

model is approaching 200 tables. 
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5.3. Application 

Since we cannot guarantee that we will be able to extract useful information 

from any single target, application on a large scale becomes necessary. This was 

done in collaboration with the Institute for systems biology and IBM. 80 ge-

nomes were processed, ranging from mycoplamsa to human. The main focus for 

me was on yeast since it is one of the most studied Eukaryotes and is well anno-

tated (Paper V). Yeast is much less complex than the higher Eukaryotes, and is 

an easier organism to do genome-wide studies on. When there is functional an-

notations, the success rate is higher, since, not uncommonly, we do have three or 

four probable superfamilies assigned from the predicted structures. If one of 

these are favored by the functional data, it will come out as significant. Higher 

eukaryotes do have another disadvantage - their genes are on average longer, and 

the biggest constraint for Rosetta is length. The same is true for Ginzu and as the 

gene gets longer the domain predictions get worse. Circumstantial evidence tells 

us that domain boundaries that are 10 or 20 amino acids wrong can make subse-

quent steps more difficult. One can imagine that an extra helix or an extra sheet 

that in really belongs to one domain get included with another domain. The do-

main missing and SS element might not be able to construct the sheets it has to 

have, or will score poorly because a large hydrophobic surface is exposed to the 

solvent. On the other hand, the second domain now has an extra element that it 

does not want to leave out in the solvent, but cannot fit within the domain. Both 

predictions are of lower quality. The goal of the confidence function and the in-

tegration is obviously to give these incorrect structures low probabilities and call 
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them failures and focus on the genes where everything worked out. Because of 

computational limitations, the proteins were predicted in low resolution, meaning 

that each amino acid residue was approximated by a centroid, and the energy 

function is based on features such as hydrophobic burial, radius of gyration and 

statistically favorable amino acid pairings. 

We have generated a rich information resource and made it available to the gen-

eral public. One of the more frustrating sides of these projects is that we cannot 

experimentally verify our findings. We are left with presenting the data to the 

research community and hope that our information is put to use. The quality of 

our predictions will hopefully become clear as more of our predictions get veri-

fied or rejected. From experiences from Paper II, this will take many years and 

the results are not always easy to interpret. 

This thesis investigates whether the recent advances in the protein structure pre-

diction field are applicable in large-scale biology. The approach taken was to 

search through a large number of protein sequences of unknown structure and 

identify well-predicted protein structures by statistical means and in combination 

with other sources of data. There are at least three viable paths to take now when 

we have a large number of genomes structurally characterized by ab initio pro-

tein structure prediction. First, it is now possible to generate high-resolution 

models with Rosetta, secondly, more experimental constraint data can be used 

both in increase the quality of all ready predicted structures and extend the scope 

for Rosetta, and third, do comparative proteomics studies and use potential 

orthologs to re-cluster and by those means get more reliable structures. 
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6. Future Perspectives 

Rosetta is developed to work on small, globular proteins and it is unclear how 

well it performs on proteins that do not fit that description. The small solvated 

globular proteins constitute a significant fraction of all proteins, but proteins of 

other classes are of great interest. Proteins over 150 amino acids are difficult to 

model in Rosetta, most likely because the search space becomes too large and the 

amount of sampling in the current protocol is limited. Many of today’s drugs tar-

get membrane proteins for example, and although much work has been done to 

predict structures for membrane proteins, this is still difficult, possibly because 

we know the structure of only a few membrane proteins making the statistical 

potentials less reliable. Many proteins are members of complexes, and how these 

complexes are organized and their dynamics is not well understood. It is crucial 

that the capability of Rosetta gets extended to larger proteins, proteins in mem-

branes and proteins in complexes. Many of these problems will be difficult to 

solve given the added complexity of the search space when dealing with larger 

proteins, protein complexes and protein interactions. To obtain experimental data 

to reduce the search space seems to be a feasible strategy, one recent example is 

von Heijnes approach to characterize transmembrane proteins in E.coli. von Hei-

jnes group combined a computational method (TMHMM [27]) with a large scale 

experiment determining the orientation of membrane proteins in E.coli and 

achieved a much higher confidence as compared to using TMHMM alone [159]. 

There are number of considerations that have to be taken into account when deal-

ing with protein structure prediction and experimental data. One is that the ex-
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perimental technology used should be applicable on a large scale and hence have 

to be cheap and fast. The other is that it should be able to say something about 

organization of proteins, protein interactions or protein complexes. Mass spec-

trometry is a promising technology that can be applicable in protein structure 

prediction in a number of ways. Additional possibilities is to cross link inter or 

intra molecular parts of proteins to find distance constraints. These can be used 

in protein structure prediction. Another possibility is to modify amino acids 

found on the surface of the protein that can be detected with the mass spectrome-

ter. It might be possible to exchange the fast-exchanging hydrogens before sub-

jecting the proteins to MS analysis. In general, residues close to the surface have 

a faster hydrogen exchange, and thus heavily substituted residues are more likely 

to be close to the surface. This information could be incorporated in the structure 

prediction process, making the predicted structures explaine more of the data. 

This would give constraint information effectively reducing the search space, 

and hence speeding up the prediction process and giving higher quality predic-

tions. Yet another idea would be to modify amino acids from membrane proteins 

sticking out into the solution to get powerful constraints on predicting membrane 

protein structures. The list of chemical modifications that could generated con-

straints detectable by a mass spectrometer is potentially long. A first step would 

be to predict protein structures with publicly available constraints and compare 

to a decoy population generated without the constraints. This would give us an 

estimate of useful constrains are and how much you need to make a significant 

impact on the structure prediction process. 

Some fraction of the proteins in a cell works in protein complexes. Research on 
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complexes has focused on trying to determine the composition of these com-

plexes. To understand why these complexes look the way they do and what the 

individual parts are doing will remain a challenge for years. One approach is to 

identify orthologous complexes. By learning what constitutes a complex in or-

ganism A, it is possible to reconstruct the same complex in organism B by ho-

mology. Interestingly, some parts of identical complexes are exchanged for non-

homologous proteins. One could speculate that these parts need to carry out the 

same, or very similar functions for the complex to perform the same function. 

This information can be used in several ways. One way is to identify what pro-

tein folds that are compatible with the function of the unknown part in organism 

B, and then try to find a protein with such a protein fold that has not been impli-

cated in other functions. In the long run, complexes will provide a wealth of in-

formation about exchangabililty in evolution and provide insight into the devel-

opment of the complex systems we find in cells today 

Protein structure prediction is gaining traction in the biological community and 

can provide means to explain functional features observed for a protein of inter-

est. The possibilities to do so will only become greater as the technology ma-

tures. The three possible next steps outlined above is just examples for how this 

technology and the data generated can be used. 
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7. Populärvetenskaplig Sammanfattning på Svenska 

Många av alla kemiska processer som pågår i våra kroppar utförs av proteiner. 

När de inte fungerar blir vi sjuka. I vissa fall, till exempel vid Alzheimers sjuk-

dom eller Creutzfeld Jacobs sjukdom, beror det på att ett visst protein har fel 

form. Att förstå hur proteiner antar sin slutliga form och vad det har för inverkan 

på proteinets funktion är således viktigt. År 2005 kostade det mellan en och ett 

par miljoner att mäta formen på ett enda protein på grund av att utrustning är dyr 

och det krävs mycket arbete. På sextiotalet upptäckte Ryle att proteiner verkar ha 

en ritning för vilken form de antar inbyggt i ordningen på aminosyrorna, 

proteinernas byggstenar. Sedan dess har det lagts ner mycket tid på att försöka 

förstå och kunna förutspå vilken form ett protein får när man bara vet ordningen 

på amino syrorna. Under de senaste tio åren har teknologin blivit bättre. I detta 

arbete har jag användt mig av Rosetta, ett mjukvaroprogram, som utvecklas av 

David Baker vid University of Washington. Rosetta kan förutsäga vilken form 

ett protein har utifrån ordningen av aminosyrorna. Genom att använda Rosetta på 

alla proteiner i jäst och kombinera resultatet med information både från experi-

mentella tekniker och databaser har vi lyckats öka förståelsen för hur jäst 

fungerar och vad styrkorna och svagheterna är med den teknologi som vi utveck-

lat. Förhoppningen är att denna information leder till en ökad förståelse i bi-

ologin som helhet. 
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